Grade 7, Module 1, Topic B

7th ${ }^{\text {th }}$ Grade Math

Module 1: Ratios and Proportional Relationships

Math Parent Letter

This document is created to give parents and students a better understanding of the math concepts found in Eureka Math (© 2013 Common Core, Inc.) that is also posted as the Engage New York material which is taught in the classroom. Module 1 of Eureka Math (Engage New York) builds on ratios, rates, and unit rates to formally define proportional relationships and the constant of proportionality.

Focus Area Topic B:

Unit Rate \& Constant of Proportionality
Words to Know:
Constant of Proportionality- If a proportional relationship is described by the set of ordered pairs that satisfies the equation $y=k x$, where k is a positive constant, then k is called the constant of proportionality; e.g., If the ratio of y to x is 2 to 3 , then the constant of proportionality is $2 / 3$ and $y=2 / 3 x$.
Constant - Specifies a unique number.
Variable - A placeholder for where we might expect to see a number.
Equivalent Ratios - Ratios that have the same value.

CAUTION
Savannah used proportional reasoning to determine how many students could attend a field trip according to the cost. Savannah determined that 8.5 students could attend the field trip. Does this make sense? Can 0.5 of a student attend the field trip?

Focus Area Topic B:

Unit Rate \& Constant of Proportionality

Constant of Proportionality

Students learn to identify the constant of proportionality by finding the unit rate in a collection of equivalent ratios.

Example Problem and Answer

The Cougar Basketball team was raising money to attend a basketball tournament at Disney World. They decided to sell stuffed bread. James sold 22 stuffed breads and submitted $\$ 99$. Michael sold 18 breads for $\$ 81$. Sam sold 35 breads for $\$ 157.50$. Isaac sold 15 breads for $\$ 67.50$.

Create a chart to represent the number of breads sold, money submitted, and the constant of proportionality. Solution:

The constant of proportionality is 4.5.

\# Breads	Money Submitted	
22	$\$ 99$	$\frac{99}{22}=4.5$
18	$\$ 81$	$\frac{81}{18}=4.5$
35	$\$ 157.50$	$\frac{157.50}{35}=4.5$
15	$\$ 67.50$	$\frac{67.50}{15}=4.5$

Question: What is the meaning of the constant of proportionality?
Answer: For each bread sold, a player submitted $\$ 4.50$.
Question: If Joe sold 42 breads, how much money would he submit?

Solution \& Answer: $42 \times \$ 4.50=\$ 189$; Joe would submit \$189.

One graph is proportionate, one is not. Which is proportionate? How do you know?

Answer: Graph 2 is proportionate because it passes through the origin and contains the point $(1,50)$ representing the unit rate of $\$ 50$ for every person.

Focus Area Topic B:

Unit Rate \& Constant of Proportionality

Students derive the constant of proportionality from the description of a real-world context and relate the equation representing the relationship to a corresponding ratio table and/or graphical representation.

Example Problem and Answer

The Lady Lion softball team needed to raise money to fund travel expenses for their playoff game in Monroe. The Lady Lions conducted a car wash at the Acadiana Mall. Below is a graph representing a portion of the revenue made from the car wash.

Task:

Write at least 4 ordered pairs from the graph and explain the meaning of each coordinate related to the scenario.

Solution:

$(1,10)$ means 1 car was washed for $\$ 10$ of revenue $(3,30)$ means 3 cars were washed for $\$ 30$ of revenue $(7,70)$ means 7 cars were washed for $\$ 70$ of revenue $(10,100)$ means 10 cars were washed for $\$ 100$ of revenue

Question:

In this scenario, which is the dependent variable - number of cars washed or revenue?

Answer:

The revenue is the dependent variable because the revenue made in the fundraiser depends on the number of cars washed.

Note: The unit rate (from Topic A) is the Constant of Proportionality.

Task:

Determine the constant of proportionality and explain what it means in this scenario.

Answer:

The constant of proportionality is $10 / 1$ which means the Lady Lions received $\$ 10$ of revenue for each car washed.

Task:

Write an equation to represent the relationship.
Answer:
$R=10 C$; R represents Revenue; C represents \# of Cars

Focus Area Topic B:

Unit Rate © Constant of Proportionality

Example Problem and Solution

Jada and her mom are making apple pies for the school fair. They have purchased apples by the pound and created a chart of the pounds of apples purchased and the cost.

Pounds of Apples	cost
2	$\$ 3$
5	$\$ 7.50$
6	$\$ 9$
9	$\$ 1.50$
	$\$ 16$

Task:

Fill in the missing values of the chart.
Answer: 9 pounds costs $\$ 13.50$; You can purchase 11 pounds for $\$ 16.50$

Question:

Is cost of the apples proportionate to the pounds purchased? If yes, state the constant of proportionality and its meaning.

Answer \& Solution:

Yes, cost is proportional to pounds purchased because every ratio of cost to number of pounds of apples is the same. The constant of proportionality is $\$ 1.50$. This means the cost per pound of apples is $\$ 1.50$

$$
\frac{3}{2}=1.5 \quad \frac{7.5}{5}=1.5 \quad \frac{9}{6}=1.5
$$

Task:

Write an equation that will relate to the pounds of apples purchased and the cost.

Solution:

$\mathrm{C}=1.5 \mathrm{~A} ; \mathrm{C}$ represents the cost; A represents the amount of pounds purchased. The constant of proportionality is the multiplier of the equation.

Question: If Jada bought 16 pounds of apples, what would be the cost?

Solution \& Answer: $\mathrm{C}=1.5(16) ; \mathrm{C}=24$; The cost would be \$24

Below is a graph representing Movie Rentals and Cost.

Note: The unit rate is must be the value of the y coordinate of the point on the graph, which has an x coordinate of one.
Question: Which ordered pair represents the unit rate?
Answer: (1,2); see the dotted arrows on the graph for guidance.

