Name: \qquad KEY \qquad
One of your peers missed class where we learned about the geometry of circles. Create a page of notes below to help them understand what they missed.

A circle is the set of all points in a plane that are the same distance from a point called the
\qquad center \qquad -.

All circles have a radius and a diameter. The diameter is the distance \qquad across the circle \qquad through the center. The radius is the distance from the center to any point on the circle. It is \qquad half \qquad of the diameter.

Example: If the diameter $=4 \mathrm{~cm}$, the radius $=$ \qquad 2 \qquad cm

Example: If the radius $=9$ inches, the diameter $=$ \qquad 18 \qquad inches

For a polygon (a 2-D shape with straight lines), the distance around the figure is called the _perimeter__. For a circle, the distance around the figure is called the \qquad circumference \qquad of the circle. We use the letter ' C ' to represent this. The ratio of the circumference to the diameter, circumference/diameter, is the same for every circle and is represented by the Greek letter, _ π_{-}, read as _pi__.

Another way to write the Circumference formula is $C=\pi * d$
(It is helpful to remember that pi is approximately equal to \qquad 3. 14 \qquad or 22/7)

If you're asked to find how much area is covered by a circle (think grass seed covering a lawn, fertilizer on a field, paint on a wall) use the formula,
$A=\pi^{*} r^{2}$

In the picture on the right, the shaded region inside the circle is the area.
Don't forget the units are squared for area!

Here's an example of finding circumference and area.

$$
\begin{aligned}
& \text { Area }=\pi r^{2} \\
& \text { Area }=_(3.14)\left(2.5^{2}\right) _ \\
& \text {Area }=_19.6 \mathrm{~m}^{2}
\end{aligned}
$$

If you're dealing with a semicircle (we learned this means an \qquad arc \qquad that is
\qquad half \qquad of a circle), don't forget to multiply by __ $1 / 2$ \qquad This is the same as dividing by \qquad -

If you have a quarter circle, then you would multiply by __ $1 / 4$ \qquad or divide by \qquad 4._._.

We also learned about shapes that are made up of two or more other shapes. These are called ___composite_ \qquad shapes. Here's an example of a square and a semicircle.

Composite shape

In order to find the perimeter of this shape, we have to pick a corner point to start at and travel ALL THE WAY around \qquad the object until we get back to where we started. The measure of each side length or arc around the outside must be added together to find the TOTAL perimeter.
$>$ Here is the formula for the perimeter of this shape: \qquad $3 s$ \qquad $+$ \qquad $1 / 2 \pi \mathrm{~d}$ \qquad (Each side of the square has a length of " s ". Since only 3 of the 4 sides are on the OUTSIDE of the shape, we only add 3 of them in the perimeter)

In order to find the area of a shape like this, we have to \qquad _add \qquad the area of the square to the area of the circle.
> Here is the formula for the total area of this shape: \qquad $\mathrm{s}^{2} \ldots+$ \qquad $1 / 2 \pi r^{2}$ \qquad

